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Abstract 

The position of a point on a surface, as determined by 

measurement, is subject to errors of observation.  The direction 

and distance of the measured point from the true point depends 

not only on the errors of the measured coordinates but also on 

the properties of the two families of lines of which the 

measured coordinates are the independent parameters.  Practical 

considerations generally preclude the use of measured coordinates 

for which the error of position depends only on the errors of 

observation, or for which the effect of the coordinate system 

Is easily understood. 

When the distribution functions of the errors f.re known, 

it is possible to construct around any point representing the 

true point on the surface a closed curve along which the 

probability of occurrence of a corresponding measured point is 

uniform, and inside which there is a specified probability 

that a measured point will fall. Accordingly, the same 

closed curve may be drawn around a measured point to 

represent the size and shape of the smallest region inside 

which, with the specified probability, the (unknown) true 

point will lie. 

Details are worked out for two kinds of error functions -- 

the normal law, and errors of limited size.  For the former. 
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the paper shows how to calculate, for each position of a 

measured point on the surface, the boundary inside which there 

is a specified probability that the true point will lie. In 

the latter case, equations are given which define the smallest 

region inside which the true point will certainly be found. 

While the analysis has been restricted to the plane, 

the ideas are applicable to other surfaces and to three 

dimensions. 
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Intrcc ictlon 

The coordinate system employed to find the position of 

a point by physical measurement is usually determined by necessity, 

convenience, or accuracy in making the measurement. The choice 

must often be mathematically inconvenient.  In two dimensions 

each measured coordinate is a parameter of one of two families 

of loci, A pair of coordinates determine a particular locus 

fron each of the two different families , and these two curves 

intersect to determine a point. 

Consider the two coordinate curves which pass through the 

actual point and another pair of curves Jhose parameters are 

error.oous measured coordinates, These four curves form what 

may be called a curvilinear parallelogram, with the point at 

one vertex and the erroneous point at the opposite vertex. 

The distance between these two points dependo on the sides of 

the orallelograra and the angles ?t its vertices. These 

elements in turn depend on the size and relative signs of the 

errors, the nature of the coordinate system, and the values of 

the coordinates at the point.  The re3atlons between an error 

of pocitlon and the errors of observation from v;hich it arises 

are :v:uch more complicated in general than they are in the 

car-t:;:.ian system or even in orthogonal curvilinear systems. 

Since it Is often impossible to avoid using complicated 

coordinate sy3teir.3, it is necessary to understand theBe matters 

if -: ) 1.-? to iraivfc a choice of rr.easurlnt tools and their 



locations which will satisfy the requirements. 

Probability considerations 

Let U and V be the curvilinear coordinates of a point 

in the X,Y plane; and let U + v, V + v be erroneous measured 

values of the same pair of coordinates. Assume that U and V 

have the same physical dimensions. Let their- errors, u and v, 

be of normal distribution and of kncvn precision. The 

probability that an error in U lies between u and u + du while 

the corresponding error in V lies between v and v 4- dv is 

then the function ^_ 

4ie        - 
it (i) 

where the k's ax'e experimentally determined moduli of 

precision. The set of all points for which this probability 

is uniform are subject to the condition 

(2) 

The parameter, h, may be determined by substitution in (2) 

of any particular- pair of values of u and v. The corresponding 

value of the probability, {?.), is 
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and this value is uniform over the band between the two 

ellipses whose parameters are h and h + dh. Since the area of 

the ellipse, (2). is 

the area of the region between the ellipses is 

1< i< 

Changing the element of area in (3) from dudv to dhs we find 

the probability of a point being inside any particular ellipse 

ie 

p-/ e «fCW-e 

If k = k* , the ellipses, (2), become circlen 

(4) 

."WA.-if 
~i— 

u + tr - '<-    ?  K^ = tf-J (5) 

for which it~j£~ 

P« l-e 

Imagine that we have made a very large number, N, of 

pairs of measurements {M  + u , V + v) of the coordinates (U,V) 

of a single point.  Suppose all these measured points to be 

plotted in the U.V plane and also in the X,Y plane.  In terms 

of the N plotted point:? in the UeV plane, the above equations 

have the following interpretation.  The density of points per 

(6) 
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unit area is 

Over the narrow band included between two ellipses of the 

family, 

z- 

whose parameters are h and h + dh, the density of points is 

uniform and the number of points included in the band is 

Ne~ dh. Suppose we divide the space around (ü,V) into a number 

of such adjacent elliptical bands by constructing several 

concentric ellipses of the family (2). The probability that a 

single measured point will fall outside one of these ellipses Is 

a simple function of the parameter h, as we have seen in (4). 

The picture drawn here in the U,V plane is exactly the same as 

we should have in the X,Y plane, had we been measuring X and y 

directly instead of indirectly through U and V which are functions 

of X and Y. The question of practical interest is: what does 

this plot in the U,V plane look like when it is mapped into the 

X,Y plane? Under any point transformation X - X(U,V), Y = Y(U,V), 

we should expect the ellipses (or circles, vihen k = k1) to map 

into some kind of closed curves with the Images of the same 

points as before lying between them.  In other words, after 

the mapping, tne probability of a single measured point falling 

outside a given closed curve in the X,Y plane is the came as 

that of its failing Outside the image of this curve in the U v 
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plane.  It will be shown that, subject to very mild 

restrictions, small ellipses (or circles) in one plane always 

reap into ellipses in the other plane. The size, orientation, 

and eccentricity of the mapped ellipse generally vary from 

point to point in the plane.  We now proceed to examine the 

nature of these transformations. 

Equations for the mapping of small regions 

Let the measured coordinates (U,V) be related to the 

cartesian (X,Y) through 

or the inverse 

in which the functions are all supposed to be real. Either (7) 

or (8) provide all necessary information for- mapping one plane 

into the other; but since we are interested only in mapping 

separate small regions we may take advantage of the fact that 

the transformation for small regions is generally linear.  In 

place of (7) or (8), which may be of any form, we may eubptitute 

linear transformations, the elements of whose matrices are the 

partial derivatives of (7) or (8) evaluated at some fij-ied point 

in the small region being mapped. 

If X and Y may be expanded in Taylor series In the 

vicinity of a point (U v ) , we have *     F * o» o 
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* 
«[tW.tx!^-^ ' FT*"""-)  U. 4- 
b U h v 

v>i M)1 

^^x/^v^^^ r£"> 

in which x=X-X.y-Y-Y0,u«=ü-ü,v-V-V0 are 

finite increments which we may identify with the errors under 

discussion.  In (9). the partial derivatives are to be 

evaluated at (UQ,V ).  With proper restrictions as to 

continuity and size of the region we may therefore employ the 

eouations 

>. **-tu+ **^r- 

and ^ L> 

(10) 

in which the coefficients   £±£— ,  etc. are constants. 
bU 

In order to sshorten the notation and emphasize the linear 

character of the approximations,, we re-write \I0) and (11) as 

y - oj  lL>   4-   o_'    is— 

i ä aJ A*- +- a'   is- 

(12) 



.o_ 

and 

(lj>> 

in Y/hich all  the    CL>..    are real. 
V 

While we may use these approximations freely, because 

they are generally accurate, it is true that one could 

encounter circumstances in which the parameter h is so large 

and the successive partial derivatives of such values at 

particular points of the field that (12) and (13) would be 

inaccurate.  However, the main purport of what we have to say 

about the probabilities associated with the images in the XSY 

plane of'the ellipses (2) in the U„V planes is unaffected by 

whether we can employ (12) and (13) or must use (7) ^nd. (8). 

The Important fact is that, given any probability 

functions, we can calculate the contours of constant proba- 

bility in the UPV plane and then draw the corresponding contours 

of the same probabilities in the X,Y plane.  For monotonic 

decreasing probability functions, the latter show the elac 

and shape of the smallest regions in3lde which there is a 

specified probability that a measured point will occur.  it 

is evident that this can always be done, regardless of the 

phape of the monotonlc error functions, or what special 
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devices are employed to effect the transformation. Thus the 

basic ideas of this discussion are independent ox" any 

particular assumptions such as (1) or the use of linear 

transformations. 

Elements of the ellipses in the X,Y plane 

The ellipse (2), in the U,V plane, becomes in the X,Y 

plane 

' *** v L ^ U5 

The discriminant of the quadratic form on the right is 

which shows that an el"1 ipse transforms into an ellipse, 

Obviously this is true regardless of the direction of 

transformation. 

Let us write (15) in the more compact form 

Note that E, F, and G ae here defined are not identical with the 
familiar E, F and G  of differential geometry ejtceot when 
k - k« « 1. 
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and refer it to new coordinates x'»y1 so that it takes the 

form 

i -3. /*• 

<- ( «t*   W-"7 (17) 

This we can do by means of a rotation about the point X ,YQ - 

such that 

As E and G are positive, we find in the relations 

(19) 

r'i_ 

3^ 5 (go) 

that the upper sign is to be taken when F > 0 and the lower 

sign when ? < 0.  The numbers a and b in (ly) are found to 

be given by 
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2.     Z. 
CL   - r= 

£ + &±SC ^ £J-$^Jt (21) 

where the choice of signs depends on the sign of P In the 

same way as before. 

We note that 

R * 0 

Implies that 

E = G  ; F  » 0 

These are the conditions for the ellipse to be a circle. The 

eccentricity of the ellipse is 

If the conditions    <r _j-   J* ^        /s 

are satisifed the locus is an ellipse whose axes are parallel 

to the axes of X and Y and whose eccentricity is 

The major and minor semi-axes in the general case are 

('*£ + &-'%   J 
and when F - 0, they are 

<--//-£• 

<*,-*_<£.  L. ,  «,//>] (23) 

^yV,_(4^\ (£>^; 



--J.^»- 

or 
A.\**-   . ,*. i''< 

The chief results of this section are ehe expressions 

for major and minor semi-axes, (23), and the direction of the 

x* axis, (20). The rule of signs implies that when 

P > 0 the major axis lies In the second quadrant, and when 

P < 0 It Is in the first quadrant. 

Bounded errors 

Instead of following the normal distribution, it may be 

found that errors of absolute value greater than a certain 

small number do not occur. Por example, a set of measurements 

of an angle by an observer using a certain sextant may show 

that the chance of an error greater than two ml^uies is 

negligible.  If this is true., we may employ as the cmallest 

contour of unit probability in the U,V plane the rectangle 

formed by the four lines 

trvlT* -Lr=-U~0 (2*) 

which maps into the oblique parallelogram bounded by the lines 
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The coordinates (x,y) of the four vertices of the 

parallelogram, referred to (X ,Y0) as origin, are given by 

the inveree transformation, (12), 

and the squares of the semi-diagonals are given by the two 

values assumed by 

.  /-_   J      >     (^ = ^^,1/-^^} (26) 

/   1 •«/ J  /    -* (27) 

\_ dUrvdl   u.tr~ w^V^ < 0/ 

With proper attention  to sign,   the angles  at  the vertices 

of the parallelogram are given by 

-1   ^' 

v c <JT 

and  the aides are    *Cv<£'      and  -»..'--«/of// 

The slopes of the diagonals are given by 

3 y. 

 ' U   S — U.Q 

0-1/ "* *-4ai. ^ 

7/  *<•<£> "^ G-/Z   *~o 
(28) 

In this case E'f F', r.nd G: are identical with the 
coei'ficients of tfrs first funüamental„quadratie form of 
differential geometry, c!S~ - a?2  -•• dY£ *  E'dU^ + 2P'dUdV + 
G'dv2. 
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and 
i 

/ / 
*-*.,   ^o-^z.^ 

<t = -«ie        S/^«- «Z*^ 

The major diagonal Is that for which the product of uQ and 

v has the same sign as F' . Along the locus of F' «= 0 the 

parallelograms become rectangles. 

If u~ =» v„, the lengths squared of the semi-diagor.als 

become 

-y2^ [£'±:Z^ '< &\ AV«/'^ /.r ' -jL- ?^: ', t,' \ u *- 

and their slopes are 

*W*«»»    ,   «*/-«*! 

The assumption of square form for the contour P * l, in the 

U«V plane is not inconsistent with uQ y/ v because we may 

take the side of the square equal to the longer side of the 

rectangle. All the points then lie inside the square.  The 

only loss is that the square is not the smallest contour for 

which P * 1. 

Graphical representation of the information 

The assumption of bounded errors, while crude, may 

sometimes be near enough to the truth. When it can be used 

together with the condition un = v we may describe the 

manner in which the transformation propagates errors by the 



•16- 

normalized major semi-diagonal 

( )     =,(£ -f /^| •*-•* ; 

which is the quotient of the longer diagonal of the 

parallelogram divided by the 3ide of the square.  If the 

contours of the aurface 

£(X, Y) = £ y+ \Zf-'{ +• & ' 
are projected on the X„Y plane they may be regarded as loci 

of points for which the circle circumscribed around the 

parallelogram is of constant diameter«  In other words they 

are loci of constant maximum possible error. The dis- 

advantage of this simple representation is that a portion of 

the information has been thrown away, We have discarded the 

information about the two directions in which, for u - v , 
o   o 

the largest measured errors may yield their largest and srnaliesi; 

displacements in the X,Y plane. 

A more complete way of presenting the facts would be to 

plot at intervals along each contour of the normalized major 

semi-diagonal, /<£" -+ \ 2.&'\ -f 5fj    » a vector showing the 

direction and magnitude of the normalized minor semi-diagonal 

and a vector showing the direction of the mr.Jor semi-diagonal. 

In the case of the normal law of errors the elements of 

the ellipses for, say F « f , can be represented by plotting 

small L shaped pairs of vectors indicating by their length 

and directions the major and minor axes of the ellipse:? aa 



they vary over the X,Y plane. 

Measured coordinatea not of_the same physical dimensions 

So far In the discussion we have svippo3ed that U and V 

are of the r.;ame kind.  If they are not of the same kind as, 

for example, in ordinary polar coordinates, there are no 

difficulties in applying the theory for normal error 

distributions. However, since the moduli of precision are 

then of different dimensions, it is futile to discuss a 

particular case in which k ~ k'. 

In the case of bounded errors the preceding treatment 

is still valid, the only restriction being that to compare 

the magnitudes of u and v is without meaning. 

Example 

For the sake of brevity vje illustrate the theory with 

an example of such simplicity that all the conclusions are 

self-evident. Consider the case of ordinary polar- coordinates 

Having no further need to represent the differential of ar. 

error, and not wishing to use unfamiliar symbols for the 

polar coordinates, we wrjte the transformation as 

JL, -I     ** 

x 
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and the relations between the errors, written c:S differentials 

as 
djZ.   ^  CcJ -7$   r  d>       t-Aslc^    -€  '  d 

The equation of a normal probability contour is 

~lu = it abx.  4- '<: a -&- 

SI 

Hence ^ 

r^<y- ^1   .   ^= /<- ^r 

The semi-axes of the ellipse are therefore 

Note that the former is independent of position; and the 

latter is proportional to r and Independent of ^"  . 

The orientation of the ellipse in the x,y plane is given by 

ZiUi. <<±> rz  r^ _____ iH   - Ta-.<  -?-z9~ 

In other words, one or the other of the axe? of the ellipse 

is always parallel to the radius  The ellipses become circles 
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for any point on the circle 

(   •  *- 

Examining the sign of P, we find that inside this circle F 

18 negative in the first and third quadrants and positiv- in 

the second and fourth.  Outside the circle, F is positive in 

the first and third» and negative in the second and fourth 

quadrants. 

We conclude that the length of the semi-axis which Ir- 

in the radial direction is uniform and equal to V"£- / •-.. • 

The other serai-axis is equal to /Z. -y"«- / "^- • 

When r = k'/k the ellipses are circle.-. 

We next replace the normal law of errors with the 

assumption of bounded errors and calculate the lengths ex the 

diagonals of the parallelograms in the X8Y plane and the>? 

inclinations. The lengths of the eeml-axss are given by 

ds\   dt**   ^j-% ^^..J A^A^^-^ '^(l^'i' * -I^JLCc&'J^ 

Since- there  is no terra in drdfc,  the p&r&llelograrae aro 

everywhere rectangles.    The slopes of their diagonals axe 

ill  —   -
LJ

-^ &•' <$J*C i. A Zero •&* • ffj£o 

/°^«_     .C;      j-   -       —r" • ft      ~f>   rt 
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These results, in such an extremely simple example, 

are obvious. 

Donald Poster 
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